UNCLASSIFIED

AD NUMBER ADA492623 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to DoD only; Foreign Government Information; JUL 1950. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008. Document partially illegible.

AUTHORITY

DSTL ltr dtd 13 Feb 2007; DSTL ltr dtd 13 Feb 2007

E. R. D. E. 2/M/50

RESTRICTED

COPY No. 20

EXPLOSIVES RESEARCH & DEVELOPMENT ESTABLISHMENT

BAGE PAGE OF THE REPORT TO BE UPGRASED REPORT GIRCULATION.

TECHNICAL MEMORANDUM No. 2/M/50

got 80 MANAL LABRARY

Thermodynamic Functions of Fluorine and some of its compounds

EXCLUDED FROM GENERAL DECLASSIFICATION SCHEDULE EXECUTIVE ORDER 11652

N. W. Luft

THIS DOCUMENT IS THE PROPERTY OF H.B.M. GOVERNMENT AND ATTENTION IS CALLED TO THE PENALTIES ATTACHING TO ANY INFRINGEMENT OF THE OFFICIAL SECRETS ACTS

INCLUSIONE 1 TO REPORT NO P- BS 49>.

It is Intended for the use of the recipient only, and for communication to such officers under him as may require to be acquainted with its contents in the course of their duties. The officers exercising this power of communication are responsible that such information is imparted with due caution and reserve. Any person other than the authorised holder, upon obtaining possession of this document, by finding or otherwise, should forward it together with his name and address in a closed envelope to:

otherwise, should forward it together with his name and address in a closed envelope to:

THE SECRETARY, MINISTRY OF SUPPLY, ADELPHI, LONDON, W.C. 2.

Letter postage need not be prepaid, other postage will berefunded. All persons are hereby warned that
the unauthorised retention or destruction of this document is an offence against the Official Secrets Acts.

Waltham Abbey, Essex.

20090109053

C20/3

July, 1950

01N-001055

MARINE

RESTRICTED

Gt. Britain

R-2497-50

Thermodynamic Functions of Fluorine and some of its Compounds ARMYAT-London

A-1

July, 1960

24 August 1950

1

John L. Atkins, Research Analyst

E.R.D.E.

H. W. Luft is the author of Explosives Research and Development Establishment Tech. Memo No. 2/M/50. The Thermodynamic functions - $(F^0 - H8)/T$, S^0 , C_p^0 , $\log Kf^0$ in the tamperature range from 500 to 2000°K. are given for the following molecules: - F, F₂, HF, ClF, BrF, BeF, F₂0,

NF3, PF8, AsF5, ClF3, EF3.

SiF4. SF6.

CF4, COF2, C2F6.

A series of important equilibrium constants have been calculated.

COMMENT: Fluorine and its dirivatives will be of interest to the Rocket and Jet Propulsion Sections of Ordnance Department. The U.S. Haval and Air Attaches, London, have received 5 copies each of this publication. One copy for RaD Board.

Dist. by Orig.: 1 cy to CRD TU; 1 cy to Picatinny Araenal

1 Incl - As above (4 cys)

APPROVED. FOR THE ARMY ATTACHE!

P. H. DRAPER, Jr. Colonel, GSC Executive Officer

RESTRICTED

RESTRICTED

0/N-001055

MINISTRY OF SUPPLY

EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT

TECHNICAL MEMORINDUM 2/M/50

Thermodynamic Functions of Fluorine and Some of its Compounds

By

N.W. Luft

This memorandum contains no classified information of overseas origin.

WALTHAM ABBEY ESSEX Approved by: C.H. JOHNSON C.S., E.R.D.E.

RESTRICTED

DISTRIBUTION

```
EXTERNAL
T.P.A.3/T.I.B. (29)
Dr. Dodd B.J.S.M., Washington, thro' T.P.A.3.
Dr. Phillips
Professor M.G.Evans) Manchester University
Dr. Springall
Ministry of Supply
C.S.A.R., C.I.O. (2)
D.E.R.D. attn. Dr. Hall
D.II.X.R.D. (2)
D.R.A.E. (3 including Dr. Parker & Dr. Murray)
D.G.W.R.D.
D.W.R. (D)
I.A. (Air) R.A.E., Farnborough P.D.S.R. (A)
P.D.S.R. (D)
A.D./G.W. (R & D)
R....E./R.P.D., Westcott (3 including Mr. Baxter & Dr. Haxwell)
Sec., S.A.C. (2)
War Office
M.C. of S. Shrivenham (2)
Air Ministry
A.D.I. (Tech.)
D.D.O.R. (2)
Admiralty
A. C.S.I.L.
D. E. R.
Supt., A.M.L. (3 including Dr. Hart & Mr. Borrow)
INTERNAL
C.S., E.R.D.E.
S.P.R.I.
S.P.R.II.
S.E.I.
S.C.E.
Mr. G.K. Adams
Dr. Cavanagh
```

INTERNAL (Contd.)

Mr. L.F. Jones

Mr. Luft

Mr. Wiseman

Dr. Wyatt
Dr. Young
Library (2)
Registry (2)
Information Bureau (2 + stock)

Further copies of this memorandum can be obtained from Chief Superintendent, Explosives Research and Development Establishment, Waltham Abbey, Essex.

CONTENTS

				P	age	<u>e</u>
I.	Summary.				1	
II.	Notation.				1	
III.	Introduction.				2	
IV.	Spectroscopic, thermochemics				2	
V.	Discussion of	res	sults.	:	L2	
VI.	Acknowledgment	ts.			14	
VII.	Bibliography.			:	15	
VIII.	Appendices.	1.	Tables of thermodynamic functions.	18		20
		2.	Equilibrium constants.	21	-	22
		3.	Contributions from internal motion about the C-C axis in C ₂ F ₆ .		23	

Reference: XR 880/2

I. SUMMARY.

The thermodynamic functions - $(F^{O} - H_{O}^{O})/T$, S^{O} , C_{O}^{O} , log Kf^O in the temperature range from 300 to 2000°K, are given for the following molecules:-

F, F2, HF, ClF, BrF, BF, BeF, F20,

NF3, PF3, AsF3, ClF3, BF3,

SiF4, SF6,

CF, COF2, C2F6.

A series of important equilibrium constants have been calculated.

II. NOTATION.

ro = nuclear separation, bond length (in the zero vibrational level), (A = 10 cm.).

B = rotational constant (cm-1).

I = moment of inertia $(10^{40} \cdot \text{g} \cdot \text{cm}^2)$.

w = vibrational frequency (cm⁻¹). In polyatmoic molecules the degeneracy is added in brackets.

xw = anharmonicity constant (cm⁻¹).

v = vibrational quantum number.

v = value of electronic term (cm⁻¹).

s = symmetry number.

M = molecular weight.

PR = statistical weight of electronic state.

 μ = dipole moment (Debye Unit = 10^{-18} e.s.u.).

P = (partial) pressure (atm.).

 $(F) = -(F^{\circ} - H_{\circ}^{\circ})/T =$ free energy function.

 $S^{O} = \text{(virtual)}$ entropy, not containing contributions from nuclear spin (S_{N}) and isotope mixing (S_{mix}) .

Cp = molar heat capacity.

 ΔH = enthalpy of reaction.

ΔHf^O= enthalpy of formation from elements in their standard states.

D = dissociation energy.

Kp = equilibrium constant.

Kf = equilibrium constant of formation.

R = universal gas constant.

 $T = temperature ({}^{O}K_{\bullet})_{\bullet}$

III. INTRODUCTION.

Recently the chemistry of fluorine compounds has become the object of increased interest (1,2,3), mainly because of the possible technical applications of such compounds. The thermodynamic functions of certain fluorine compounds have therefore been calculated and from these, equilibrium data for various reactions of technical interest have been obtained.

Some of these data are taken from the literature. Additional data have been calculated from spectroscopic results by well-known statistical methods (4,5,49).

As the main interest lies in the region below 2000 or even 1500°K. it has been thought sufficient to use the model of the harmonic oscillator and rigid rotator ('HORR-approximation') in these calculations for molecules in the perfect gas state. Vibrational contributions were calculated from Wilson's tables (cf.4).

IV. SPECTROSCOPIC, MOLECULAR AND THERMOCHEMICAL DATA.

The practical limit to the accuracy of the calculated figures is set by the accuracy of available spectroscopic, molecular and thermochemical data. These data are reviewed in the following sections; thus an estimate of the accuracy of the thermodynamic functions in the appendix is easily possible.

1. Atomic fluorine, F.

Apart from the ground state ${}^2P_{3/2}$ with $p_{E0} = 4$, the first excited state ${}^2P_{1/2}$ at $v_{E1} = 407$ cm⁻¹ is also taken into account. The ${}^4P_{5/2}$ state has no influence below $T = 4000^{\circ}K_{\bullet}$

Murphy and Vance (7) represent the free energy function of atomic fluorine by the formula:-

$$-(F^{\circ} - H_{\circ}^{\circ})/T = a/T + b\log T + cT + dT^{2} + i$$
with $a = -754.75$, $b = 4.6445$, $c = 40.38 \times 10^{-4}$, $d = -74.70 \times 10^{-8}$
 $i = 22.5832$.

This formula gives satisfactory results up to about 2000° K. which agree closely with the figures of Table I. The contribution $S_N = 1.377$ for nuclear spin $\frac{1}{2}$ is not included in these figures.

Equilibrium constants of formation of atomic fluorine according to the equation

have been calculated with the enthalpies of formation ΔHf_0^0 (F) = +20 and +16.2 k.cals. (see below).

2. Fluorine, F2.

The ground state is 1 , point group $D_{\infty h}$ $P_{EO}=1$, s=2. Electron diffraction measurements (8) give the nuclear equilibrium distance $r_{e}(F-F)=1.435\pm0.01$; from this, $r_{o}=1.45$ is assumed; this gives a moment of inertia of $I_{o}=33.16$ in fair agreement with (7).

Apart from less reliable data e.g. Born-Haber cycles for the lattice energy of fluorides according to Meyer-Helmholtz, there has been recent experimental evidence (9) for a low value of the dissociation energy of F2 viz:-

$$D(F_2) \equiv 2\Delta Hf_0^0(F) = +32.4 \text{ k. cals.}$$

from a spectroscopic determination of D(FC1) and a value of $\Delta Hf(FC1) = -15.0$ k.cals. A second new value $\Delta Hf(FC1) = -11.6$ k.cals. (ref.20) gives $D_{o}(F_{2}) = +39.5$ k.cals.

A low value of this order is supported by various thermochemical arguments, cf. (6), (26). Equilibrium constants Kf° for the formation of atomic fluorine F are given in the appendix with the two values $Hf^{\circ}_{\circ}(F) = 16.2$ and ~20 k.cals., since the previous value $D(F_2)$ ~63 k.cals. is not supported by direct measurement.

The vibrational frequency of F_2 in the ground state is not known for certain. Together with unknown upper states it may be the main source of error. Gale and Monk (10), who could not detect a limit of convergence in absorption as far as $\lambda 4100A$ (~69 k.cals.), made an analysis of F_2 bands between $\lambda 5100$ A and $\lambda 7200A$ in emission. Structure and intensities indicate a Σ - Π transition with

$$\nu = 17438.8 + (1104.9v' - 2.9v'^2) - (1071.5v'' - 9.9v''^2)$$

$$I_0^{\dagger} = 34.2; \quad r_0^{\dagger} = 1.48; \quad I_0^{\dagger} = 26.0; \quad r_0^{\dagger} = 1.28$$

/Although

Although this system probably involves only upper states and shows perturbation, both vibrational frequencies have been wrongly used at times for the ground state of F2 (cf. 11).

Murphy and Vance (7) derived an approximate value of ω_0 by means of Badger's rule (12). With the old value $r_e = 1.45$ they obtain $\omega_0 = 856$ cm⁻¹, whereas the new $r_e = 1.435$ gives $\omega_0 = 892$ and 1062 cm⁻¹ from the rules for rows and columns of the periodic table respectively (cf. 8). From a comparison of the vibrational frequencies for I_2 , Br_2 , Cl_2 (cf. 14, 15) in the ground state ' Σ + and 8 stable upper states:-

one finds that Π_{21g} is the only upper state in which ω_{0} is greater than in the ground state, and $r_{e}^{\ n}(\sim 1/\omega_{e})$ smaller. If this is also true for F_{2} then Gale and Monk's spectroscopic results indicate that in the ground state of F, the vibrational frequency is not smaller than w~1070 em-1.

Owing to the lack of data this frequency $\omega_0 = 1070$, supported by the above result from Badger's rule, is used in the following calculations. w~ll30 quoted in (11) would cause only a minor difference.

From any of these values of ω_0 and the low value of D(F₂) a high anharmonicity x_e ω_e must be expected; this is in agreement with an argument by Walsh (13) on possible repulsion between bonding and other orbitals in molecules made up of small and highly electro-negative atoms. An approximate value for $x_{e}w_{e}$ can be derived by applying the rule (14).

in the series of halogens, viz. $x_e \omega_e \sim 20 \text{ cm}^{-1}$. Linear extrapolation of vibrational levels to their convergence limit (45):-

$$D_{o} = \frac{\omega_{e}^{2}}{4 \times_{e} \omega_{e}} - \frac{1}{2} \omega_{e}$$

which gives too large values for I_2 and Br_2 , but only slightly too low for Cl_2 , yields $D_0(F_2) \lesssim 40$ k.eals. in agreement with the values given above.

No anharmonieity nor upper electronic states are taken into account

/although

Recently (43) a Raman shift $\omega = 892.1 \pm 2$ cm⁻¹ has been found in F₂ and accepted as its fundamental frequency. This gives ω_0 ~920 cm⁻¹ and results in thermodynamic functions which are intermediate between those of ref. (7) and the present values of Table I.

although the levels and structures of the first excited states of F2 may differ from those of the other halogens.

3. Hydrogen fluoride, HF.

The molecular ground state is ${}^{1}\Sigma_{g}^{+}$. Upper states which must be high are not known. For molecular and spectroscopic data (cf. 15) ω_{0} = 4050.4, $\kappa_{e}\omega_{e}$ = 90.9; B_{o} = 20.542 giving r_{o} = 0.917 and I_{o} = 1.362.

The thermodynamic functions are those by Murphy and Vance (7) with slight corrections for the new values of the universal constants.

Equilibrium constants Kf^{O} have been calculated with the new value (17, 27) $\Delta\mathrm{Hf}^{\mathrm{O}}_{\mathrm{O}}(\mathrm{HF}) = -64.5$ k.cals. With the new $\mathrm{D}(\mathrm{F}_2) = 40$ or 32.4 k.cals. this corresponds to $\mathrm{D}(\mathrm{HF}) = 136.1$ or 132.3 k.cals. and to the electronegativity differences (24) $\mathrm{X}_{\mathrm{HF}} = \mathrm{D}(\mathrm{HF}) - [\mathrm{D}(\mathrm{H}_2).\mathrm{D}(\mathrm{F}_2)]^2 = 72.7$ or 75.3 k.cals. in agreement with the high dipole moment $\mu = 1.91$.

4. Chlorine mono fluoride, CIF.

Wahrhaftig (19) and, more recently, Schmitz and Schumacher (9) have analysed the absorption spectrum. The ground state is Σ_0^+ and a perturbation of the vibrational levels is explained as pre-dissociation (limit ~60.8 k.cals.). By comparison with ICl and IBr spectra, Wahrhaftig concludes that the upper state is Π_0^+ . The vibrational analysis of (9), (19) is based upon the three most distinct bands at ~21000cm and including subsequent diffuse bands, the convergence limit is obtained at 21500 cm (~61.4 k.cals.). The state of the F atoms formed in dissociation has not been established; but if we assume that the F-atoms are excited ($P_1/2 = 1.1$ k.cals.) the dissociation energy of ClF into normal atoms is D(FC1) = 60.3 k.cals.

It might be that the band system actually involves transitions from the v''=1 ground state level instead of the v''=0, and this cannot definitely be excluded by applying the Franck-Condon principle to Morse-curves constructed from the known data. In the case of v''=1 the value of $D_0(ClF)$ would be increased by 2.3 k.cals.; altogether, D(FCl) would not be higher than 64 k.cals. and $D(F_2)$ not higher than 45 k.cals. Compared with the available experimental evidence, Wicke's (58) recent argument in favour of $D(F_2) = 63$ k.cals. is not convincing. The data for the two states of ClF is:-

$$\mathbf{x} \stackrel{\mathbf{i}}{\Sigma}_{\mathbf{g}}^{+}$$
: $\mathbf{B}_{\mathbf{c}} = 0.518$; $\mathbf{c}_{\mathbf{c}} = 0.006$; $\mathbf{\omega}_{\mathbf{c}} = 793.2$ (780.4); $\mathbf{x}_{\mathbf{c}} \stackrel{\boldsymbol{\omega}}{\omega}_{\mathbf{c}} = 9.9$ (4.0); $\mathbf{r}_{\mathbf{c}} = 1.625$; $\mathbf{\omega}_{\mathbf{c}} = 783$ (776); $\mathbf{r}_{\mathbf{c}} = 1.630$; $\mathbf{I}_{\mathbf{c}} = 54.35$
 $\mathbf{A} \stackrel{\mathbf{3}}{\Pi}_{\mathbf{c}}^{+}$ $\mathbf{B}_{\mathbf{c}} = 0.327$; $\mathbf{c}_{\mathbf{c}} = 0.014$; $\mathbf{\omega}_{\mathbf{c}} = 313.5$ (316.4); $\mathbf{x}_{\mathbf{c}} \stackrel{\boldsymbol{\omega}}{\omega}_{\mathbf{c}} = 2.22$ (11.8); $\mathbf{r}_{\mathbf{c}} = 1.92$; $\mathbf{\omega}_{\mathbf{c}} = 311$ (305); $\mathbf{r}_{\mathbf{c}} = 1.93$; /Values

^{**}Recent infra red and Raman studies (62) confirm the above frequency of the ground state of ClF and therefore support the value D(FCl) = 60.3 k.cals.

Values in brackets are from (9). The micro-wave spectrum of FCl (28) agrees excellently with Wahrhaftig's rotational analysis. Wells (56) calculated r(FCl) = 1.62 from Shomaker & Stevenson's (59) law for bond lengths. The dipole moment (28) is $\mu = 0.88$ in agreement with a certain amount of ionic contribution to the bond energy, $x_{FCl} = D(FCl) - [D(F_2).D(Cl_2)]^{\frac{1}{2}}$ 15 k.cals.

Thermodynamic data have been calculated by Potter (29) in the HORR approximation up to 2000° K. from Wahrhaftig's data with corrections for the isotopy of Cl. These data are given in the appendix; they do not contain the mixing term for isotopy $S_{mix} = 1.109$. The II state has been neglected since, even at 2000° K. it has only a minor influence on the thermodynamic functions. The correction for isotopy is of a bigger order but still small.

Equilibrium constants Kf have been calculated with the two values

$$\Delta \text{Hf}_{\text{SCC}}^{\text{O}}$$
 (FCL) = -11.6 and -15.0 k.cals. = $\Delta \text{Hf}_{\text{O}}^{\text{O}}$ (FC1)

according to (20) and (9) respectively, since a decision between these two values is not possible at the moment. Perhaps a comparison of the two theoretical temperatures in the reaction $\text{Cl}_2 + \text{F}_2 \rightarrow 2\text{ClF}$, corresponding to the alternative values $\Delta \text{Hf}_0^{\circ}(\text{FGI})$, with an experimentally determined one, could settle the dispute. A third value $\Delta \text{Hf}_0^{\circ}(\text{NaCl}) = -13.9 \text{ k.cals.}$ is obtained by the combination of $\Delta \text{Hf}(\text{NaF}) = -138.2$ and $\Delta \text{Hf}(\text{NaCl}) = -99.8 \text{ k.cals.}$ (55) with the enthalpy change $\Delta \text{H} = -24.5 \text{ k.cals.}$ (9) for the reaction

At the time of this investigation Ward and Hussey (57) published thermodynamic functions of FCl from 2000 up to 5000° K. calculated with $\psi_0 = 773$, $I_0 = 54.35$ by the HORR approximation, and, including the II state ($P_{El} = 6$). Their equilibrium constants are based on $\Delta Hf_0^{\circ}(FCl) = -15.0$ k.cals.

5. Bromine fluoride, BrF.

Vibrational analysis (25) gives $\omega_0 = 665$ and $X_0\omega_0 = 3$ for the ${}^{1}\Sigma^{+}_{g}$ ground state. As a rotational analysis has not been made, the value ${}^{1}\Gamma_{0} = 1.85$ is used, calculated from bond radii (24) 12 which gives a moment of inertia ${}^{1}\Gamma_{0} = 87.23$.

The thermodynamic functions in the appendix do not include upper states, correction for the anharmonicity of vibration or the effect of isotope mixing. The error thus incurred is probably not serious.

/The

A recent micro-wave analysis (63) gives $r_e = 1.759$ and $I_e = 78.355$ for Br F. This corresponds to $I_o = 79.0$ and requires a reduction of the values for S and (F) in Table I by 0.199 units.

The energy of dissociation is D(BrF) = 50.3 or 59.9 k.eals.(25) depending on whether F or Br is the excited one of the dissociation product. If we discard the second value, then, according to the value of $D(F_2)$ chosen, we obtain ΔHf_0^0 (BrF) = -7.6 or -11.4 k.cals. The first value, corresponding to $D(F_2) = 40$ k.cals. has been used in calculating the equilibrium constants of formation.

6. Boron mono-fluoride, BF.

The ground state is ${}^{1}\Sigma$ (44) in contrast to the earlier assignment ${}^{3}\Pi$ (15), therefore $P_{EO}=1$, S = 1,

 $r_o(B-F) = 1.30$ is used (50), whereas $r_o(B-F)$ is equal to 1.29 in BFz and = 1.32 in BF in the hypothetical $^{\circ}\Pi$ state; thus $I_o = 19.34$.

Bibliography (44) gives also $\omega_0=1400$, instead of the previous value of 1314 and $\omega_e X_e=12$. The first excited state is at 51083 cm⁻¹ (~147 k.cals.) so that it need not be taken into account below 4000 K.

The previous value (45) of the bond energy D(BF) ~105 k.eals. is probably incorrect. Linear Birge-Sponer extrapolation gives ~140 k.eals. which is also the order of the average dissociation energy of BF bonds in BF₃. The enthalpy of formation is

$$\Delta \text{Hf}_{0}^{\circ}(\text{BF}) = \Delta \text{Hf}_{0}^{\circ}(\text{F}) + \Delta \text{Hf}_{0}^{\circ}(\text{B}_{\text{gas}}) - D(\text{BF}) \sim 115 - D(\text{BF}) \sim 25 \text{ k.cals.}$$

whereas (18) gives -18 k.eals.; the former value is used in the calculation of equilibrium constants. The values of the thermodynamic functions of BF are given in the Appendix; they do not include the mixing term $S_{mix} = 0.989$ and the influence of isotopy on I and ω is omitted since this data is not of high accuracy. The thermodynamic functions of BF, which are put forward by Ward and Hussey (57) for the temperature ranges 300-2000°K. and 2000 - 5000°K. respectively are incorrect since they imply a Π ground state.

7. Beryllium-monofluoride, BeF.

Molecular data (11,15,52): $^{2}\Sigma$, $^{2}\Sigma$

Hf₀(BeF) is not known, D(BeF) is very uncertain. Linear Birge-Sponer extrapolation of vibrational data gives D(BeF) = 102, whereas Herzberg (15) records ~125 k.cals. From thermochemical data and average bond energies in BeF₂ the value D(BeF) ~145 k.cals. is obtained as an upper limit. It may be that the first bond in BeF₂ is stronger that the second one (cf.54) so that Herzberg's figure would be of the right order. In view of this uncertainty no values of Kf⁰ have been calculated.

8. Fluorine menoxide, F20.

The thermodynamic functions given in Appendix are those calculated by Potter (29) with the molecular data:-

$$^{1}\Sigma$$
, C_{2v} , $P_{EO} = 1$, $S = 2$, $\omega_{o} = 833$, 492, 1110 cm⁻¹, $r_{o}(F-0)$
= 1.41 ± 0.05Å, angle FOF = 100 ± 5°, $I_{A} = I_{B} + I_{c} = 88.95$, $I_{B} = 73.59$, $I_{C} = 15.35$.

Probably the value r(0-F) = 1.41 is too high (57); the lower limit would result in values of (F) and S which are smaller by 0.216 than those given in the Appendix.

Equilibrium constants of formation have been calculated with the enthalpy of formation $\Delta Hf_0^0(OF_2) = +6.08$ k.cals. which is the most probable mean value (29).

9. Tri-fluorides of the 5th group of the periodic table, XF3.

The ground state is $^{1}\Sigma$; point group C_{3y} (pyramidal), $P_{E0} = 1$, S = 3. Spectroscopic and molecular data (in general cf. 11,22,23):

Molecule	Bond Lengths	Angle FXF	Moments of Incrtia	Vibrational Frequencies
NF3	1.34	110	152.0, 79.6, 79.6	420(2), 505(1), 908(1)
PF ₃	1.52	104	176, 107, 107	486(2), 531(1), 840(2), 890(1)
AsF ₃	1.712 (1.72)	100	216.9, 142.8, 142.8, (220), (145), (145)	274(2), 341(1), 644(2), 707(1)
SbF ₃	(1.95)	(105)		(620)
BiF ₃	(2,1)	(110)		(550)

Thermodynamic functions for NF₃ have been calculated with r(N-F) = 1.34 (26). The distances r(F-N) = 1.37 or 1.45 (ref.57) would increase the values of (F) and S by 0.12 or 0.57 respectively. ΔH_{293}° (NF₃) = -27.2 k.cals. from (18) gives ΔH_{0}° (NF₃) = -26.0 k.cals. with the present data. Earlier data for PF₃ are by Stevenson and Yost (30) and our slight differences are due to the use of revised physical constants. ΔH_{0}° (PF₃) = -227 k.cals. from a comparison of bond energies. AsF₃ is 100% ionic FASF₂ (31). Thermodynamic functions of AsF₃ at 298.16 K. are given in (18) which agree with our own data. ΔH_{0}° = -218.3 (18) gives ΔH_{0}° (AsF₃) = -217 k.cals. This value and r(AsF) = 1.712 (31) have been used in the calculations. The data for SbF₃ and BiF₃ are net adequate for thermodynamic calculations. ΔH_{0}° (SbF₃) ~ -205 k.cals.

10. Hexa-flucrides of the 6th group.

The ground state is $^{1}\Sigma$, point group 0_{h} , P_{EO} = 1, S = 24; I_{A} = I_{B} = I_{C} = I_{C} Molecular data (11, 22, 23, 52).

Molecule	Bond Length	Moments of Inertia	Vibrational Frequencies	- AHr ^o	398 • 1 8 So
SF ₆	1.57	305	363(3),617(3),525(3), 645(2),775(1),965(3)	262	69•6
SeF6	1.68	349	245(3),461(3),405(3), 662(2),708(1),787(3)	246	75.1
TeF6	1.83	415	165(3),370(3),313(3), 674(2),701(1),752(3)	315	80.8

Meyey and Buell (51) have ealculated the thermodynamic functions of SF₆ between 600 and 5000 K.: their data is fitted by:

$$C_p^0 = 37.41 + 0.0876 \times 10^{-3} T - 18.78 \times 10^{-5} \times T^2$$

For the formation of SF6 from S2(g) and F2(g) they give:

$$\Delta F^{\circ} = -271.800 - 11.33 \times T \times lnT + 1.678 \times 10^{-3}T^{2} + 9.39 \times 10^{5} \times T^{-1} + 171.2 \times T$$

$$\Delta H^{\circ} = -271.100 - 11.33 \times T - 1.678 \times 10^{-3} \times T^{2} + 18.78 \times 10^{5} \times T^{-1}$$

Schumb (41) gives some thermochemical properties of SF6 at low temperatures. In the above table the - Δ Hf's and S's at 298.16°K. are taken from (18). The value of S° for SF6 compares well with the figure given in the Appendix (cf.53 for experimental values). The value C° (SF6) = 21.57 at 298.16 as given in (18) is too low and the C° values from (51) agree very well with the present calculations.

11. Bcron trifluoride, BF3.

Ground state $^1\Sigma$, point group D_{3h} (plane symmetrical), $P_{EO}=1$, S=6. r(B-F)=1.29, $FBF=120^{\circ}$, $I_A=158$, $I_B=I_C=I_A/2=78.9$, vibrational frequencies (22,23) $\omega=886$, 700, 1450(2), 480(2). The thermodynamic functions (F) and S are taken from (42), the mixing term for isotopy is not included. According to (18), $\Delta Hf_{298.16}^{\circ}$ (BF3) = -265.4 which gives ΔHf_{0}° (BF3) = -267.0 k.cals. and an average dissociation energy of BF bonds of 140 k.eals. Instead of Kf the equilibrium constants K_p for the reaction $EF3 \rightarrow EF + F_2$ have been calculated with $\Delta H=+242$ k.eals. Bibliography (57) evaluated K_p 's for the reaction $EF_3 \rightarrow EF + 2F$ with $\Delta H=+355.0$ k.cals. whereas our new ΔHf values lead to $\Delta H=+282$ k.cals.

12. Chlorine trifluoride, ClF3.

The molecular ground state is assumed to be Σ with $P_{EO} = 1$. Recently (21) the infra-red and Raman-spectra of ClF_3 have been investigated but no analysis was made in view of the complex character of the bands due partly to molecular association in the liquid phase (9, 21). Another spectroscopic investigation (32) gives the following information:-

 $\omega_1 = 508$; $\omega_{2,4} = 750$, $\omega_{3,5} = 316$; $\omega_4 = 428$; mean moment of inertia $\tilde{\mathbf{I}} = 130$ with an estimated error of about 10%.

These frequencies were used in calculating the thermodynamic functions of ClFz. A pyramidal C_{Zy} structure was assumed in agreement with the appearance of 4 Raman active frequencies and the existence of the dimer possibly F_Z Cl-ClFz (with contributions from F_Z Cl-ClFz) in agreement with the low heat of polymerisation (33). The angle FClF was assumed allow and r_O (Cl-F) = 1.63 i.e. the same as in ClF, although this leads to the rather high moments of inertia I_A = 225, I_B = I_C = 122.5, I_B = 150.

The following values have been quoted for the heat of formation of ClF_2 at 298.16°K: -42.0 ± 1.5 (33), -37.1 (32), -28.4 k.cals. (27). The mean value $Hf_0^O(ClF_3) = -36$ k.eals. was used for ealculating equilibrium constants.

13. Silieon tetra-fluoride, SiF4.

The ground state is ${}^{1}\!z$; point group ${}^{1}\!z$, ${}^{1}\!z$ = 1, S = 12. Tetrahedral

angles FSiF = 109° 28' and nuclear distances $r_{\circ}(\text{Si-F})$ = 1.54 (39) give the moments of inertia $I_{\text{A}} = I_{\text{B}} = I_{\text{C}} = (8/3)(\text{M}_{\text{H}}/\text{N}) = 199.5$ (N = Avogadro number). The vibrational frequencies (22, 23) are: ω = 800, 260(2), 1022(3), 420(3). Earlier values (18, 40) of S at 298.16°K. are somewhat higher than our value. It is not known whether these earlier values include the mixing term $S_{\text{mix}} = 0.304$, which is not contained in the figures given in the Appendix. In ealculating the equilibrium constants $\Delta \text{Hf}_{\circ}^{\circ}(\text{SiF}_{4}) = -373$ k.cals. has been used (cf. $\Delta \text{Hf}_{298.16}^{\circ} = -370$ k.eals in (18).

14. Carbon tetra-fluoride, CF4.

The ground state is $^{4}\Sigma$, point group T_{d} , P_{EO} = 1, S = 12. No upper states need be considered because of the absence of absorption in the near ultra-violet.

Tetrahedral angles FCF = 109° 28' and bond distances r(C-F) = 1.36 give the moments of inertia $I_A = I_B = I_C = 154.8$. The vibrational frequencies (22,23) arc: $\omega = 904$, 437(2), 1265(3), 630(3) (ef.34 for force constants). The C-F bonds are mainly covalent but there is some resonance

with FCF₃ (24). The enthalpy of formation has been amended from -164 (11,18) to ΔHf_{0}° (CF₄) = -231± 3 k₀ cals. (27) and this value has been used as ΔHf_{0}° in calculating the equilibrium constants. The entropy figure at

/300°K.

300°K. agrees well with that given in (18).

15. Carbon-oxyfluoride, COF2.

The most probable structure is $^{1}\Sigma$; point group C_{2v} , with $P_{EO}=1$ and S=2 as in $COCl_{2}$ and $COBr_{2}$. FCF = 115° $r_{\circ}(C-0)=1.27$ and $r_{\circ}(C-F)=1.38$ have been assumed and these give $I_{A}=75.89$, $I_{B}=85.47$, $I_{C}=I_{A}+I_{B}=161.45$. It may well be that r(C-F) is as small as ~ 1.32 or even smaller, as is suggested by comparing r(C-X) in the series COX_{2} , (X=Cl, Br) with the normal bond length r(C-X). As this procedure is open to criticism the average r(C-F)=1.38 has been preferred.

Recently (35) infra-red and Raman bands of COF_2 have been communicated but no analysis was made. The following six frequencies have been used in the calculations, $\omega = 580$, 626, 775, 965, 1249, 1941 cm⁻¹. The enthalpy of formation was taken as $\Delta Hf_0(COF_2) = -150$ k, cals. in good agreement with the experimental value of (27). This corresponds roughly to the same value D(C-0) 158 k, cals. in COF_2 and $COCI_2$ calculated from average bond energies.

16. Hexafluoroethane, CoF6.

The structure is either staggered D_{3d} or eclipsed D_{3h} both having the symmetry number S = 6.

The vibrational frequencies and their assignment are (36) ω_1 = 1420, ω_2 = 809, ω_3 = 349, 5 = 1117, ω_6 = 714, ω_7 = 1250(2), ω_8 = 523(2), ω_9 = 216(2), ω_{10} = 1237(2), ω_{11} = 620(2), ω_{12} = 380(2): (force constants cf. 34). The torsional frequency ω_4 is not known, since it is inactive in both infra-red and Raman spectrum.

Unfortunately the bond distances are not known with accuracy. The normal distances r(C-C) = 1.54 and r(C-F) = 1.36 (24) have been found to give vibrational frequencies for the Urey-Bradley field which agree well with the experimental ones (46). This method, however, does not include the interaction of the two CF_3 groups. According to (47) the distances r(C-C) = 1.45 (37) and r(C-F) = 1.35 are not in very good agreement with magnetic measurements on the solid crystal. An even smaller r(C-F) (48) would however improve this situation.

Tetrahedral angles FCF = 109° 28' have been assumed, r(C-F) = 1.35, r(C-C) = 1.45 in agreement with (37), giving $I_A = 306.7$, $I_B = I_C = 435.5$. The normal values of r(C-C) = 1.54, r(C-F) = 1.36 would give (36), $I_A = 311.2$, $I_B = I_C = 462.4$, whereas a Gerhard & Dennison extrapolation of measurements on the Q, P and R branches give $I_A = 98$, $I_B = I_C = 401$ which are obviously too low.

The contribution from the internal movement about the C-C axis depends on whether this movement is a torsional oscillation or a free or hindered internal rotation. Since no spectroscopic nor calorimetric measurements are available we can only estimate this contribution. It will be assumed that there is an internal rotation restricted by a potential barrier of estimated height V ~3500 cals. The reduced moment of inertia in internal rotation is $I_r = I_A/4$ ~76.7 and the symmetry number S = 3, corresponding to 3 equivalent positions of the two CF₃ groups relative to each other. With n = 3 equal and equidistant maxima, the potential V ~3.5 k.cals. corresponds to the torsional frequency $\omega_r = (n/2\pi)(V/2I_r)^{\frac{1}{2}}$ ~75 cm⁻¹. In the

/following

following table (cf. Appendix 3, Sec. VIII) the contributions from this frequency (v) are compared with those for free (f) and restricted (r) internal rotation, the latter increments being calculated from Pitzer's tables (cf. 51) with V=3500, and 10^{-36} x $n^2/I_TV=0.335$.

As an approximation the problem is treated as an equilibrium between the oscillating staggered D_{3d} form, which also occurs in the similar C₂CL₆ molecule (38), and the form having restricted internal rotation, viz:-

$$C_2F_6(D_{3d}, osc.) \Rightarrow C_2F_6(rot.); K = [C_2F_6(rot.)] / [C_2F_6(osc.)] = X/(I-X);$$

$$X = [C_2F_6(rot.)] = K/(K+1) \text{ and}$$

RlnK = (F)r - (F)v -
$$\Delta H_{O}^{O}/T$$
; $\Delta H_{O}^{O} = V/2 - \omega_{r}/2 = 1650 \text{ cals.}$

The corresponding values of K and X are listed in the last column of Table 3. The thermodynamic functions of C₂F₆ in the Appendix have been obtained by combining the functions of the two forms according to their molar fractions. In view of the general uncertainty of the other data this procedure was thought satisfactory, although, strictly speaking in the transitional region one ought to calculate (F) etc. from the partition function with eigen values of E_r from the wave-equation (Mathieu equation).

The old value of $\Delta Hf(C_2F_6) = 240$ k.cals. (18) is definitely wrong. With the new $\Delta Hf_0^0(CF_4) = -231$ k.cals. the approximate value $\Delta Hf_0^0(C_2F_6) = -315$ k.cals. was derived by using average bond energies D(C-F) = 107, and D(C-C) = 67 k.cals. according to the shorter bond in C_2F_6 .

V. DISCUSSION OF RESULTS.

- l. The equilibrium constants Kf° of formation of F and HF replace earlier erroneous data (60). F₂ and HF are more dissociated at high temperature than previously assumed. Above 1500-2000°K. fluorine should behave as a monatomic gas.
 - 2. The final reaction temperature of the process

$$\frac{1}{2}\text{Cl}_2 + \frac{1}{2}\text{F}_2 \Rightarrow \text{ClF}$$

which was used (20) to determine $\Delta Hf(FCl)$, is 1660 or 2080 K. depending on whether $\Delta Hf^{o}(FCl) = -11.6$ or -15.0 k.cals. respectively. At the higher temperature dissociation of FCl into atoms amounts to ~2 per cent at 1 atm. pressure.

- 3. Apart from dissociation, the formation of CLF_z may have influenced Wicke's (20) measurement of $\Delta Hf^{O}(FCl)$ to an even larger extent, especially if $\Delta Hf(ClF_z)$ is larger than +36 k.cals., the figure accepted. From this it appears that $\Delta Hf^{O}(ClF)$ = +11.6 may be slightly too low.
- 4. At temperatures below 800-900°K, the formation of NF₃ is thermodynamically possible. Apparently kinetic conditions are unfavourable, an obstacle, however which might be overcome as in the synthesis of ammonia.

15.

- 5. CF_4 and COF_2 are formed easily from F_2 and either C (solid) or CO. Under comparable conditions CF_4 is the major product.
 - 6. The equilibrium constants for the reactions:-

CO + 2HF
$$\Rightarrow$$
 COF₂ + H₂; $\triangle H_0^{\circ} = +6.20$ k.eals.
COF₂ + 2HF \Rightarrow CF₄ + H₂O; $\triangle H_0^{\circ} = -9.11$ k.cals.
CF₄ + 2H₂O \Rightarrow CO₂ + 4HF; $\triangle H_0^{\circ} = -6.76$ k.eals.
COF₂ + H₂O \Rightarrow CO₂ + 2HF; $\triangle H_0^{\circ} = -15.86$ k.eals.

are given in the Appendix; these equilibria correspond to the water-gas equilibrium in the oxidation of hydrocarbons.

7. Both the equilibria

$$C_{\text{solid}} + 4\text{HF} \rightarrow CF_4 + 2H_2; \Delta H_0^0 = +27.0 \text{ k.eals.}$$

and

$$C$$
 + $F_2O \stackrel{\rightarrow}{\rightarrow} CO + F_2 \rightarrow COF_2$; $\Delta H_0^O = -33.28$ and -156 k.cals.resp.

behave rather differently from the corresponding reaction

$$C_{\text{solid}} + H_2O \rightarrow CO + H_2 \rightarrow H_2CO.$$

8. The equilibrium constants for the reaction

show that this reaction occurs to a very small extent in comparison with the hydrocarbons.

9. The special behaviour of most of the equilibria under (6) and (7) together with those of the reactions

$$CF_4 + O_2 = CO_2 + 2F_2$$
; $\Delta H_0^0 = +137.03$ k.cals.
 $CF_4 + \frac{1}{2}O_2 = CO + 2F_2$; $\Delta H_0^0 = +203.80$ k.cals.

might explain some of the pecularities of the combustion of organic fluorine compounds. As a practical result it can be concluded that the lower perfluorinated paraffins are reasonably stable to dry oxygen up to fairly high temperatures but may react with H₂ or H₂O.

VI. ACKNOWLEDGMENTS.

The author wishes to thank Mr. L.A. Wiseman for valuable discussions and Miss S. Bennett who did most of the necessary calculations.

VII. BIBLIOGRAPHY.

- 1. M. Stacey. Nature 164 (1949) 642.
- 2. Symposium on Fluorine Chemistry, Ind. Eng. Chem. 39 (1947), No. 3.
- 3. H.S. Booth & J.T. Pinkstone Jr. Chem. Rev. 41 (1947) 421.
- 4. H.S. Taylor & S. Glasstone. 'A Treatise on Physical Chemistry, New York, 1942.
- 5. Mayer & Mayer. 'Statistical Mechanics', New York, 1940.
- 6. M.G. Evans, E. Warhurst, H. Whittle. J. Chem. Soc. (1950) 1524.
- 7. G.M. Murphy & J.E. Vance. J. Chem. Phys. 7 (1939) 806.
- 8. M.T. Rogers, V.S. Shomaker, D.P. Stevenson. J.Am. Chem. Soc. 63 (1941) 2610.
- 9. H. Schmitz & H.J. Schumacher. Z. Naturforsch. 20 (1947.) 363.
- 10. H.G. Gale & G.G. Monk. Astrophys. <u>J.59</u> (1924) 125, <u>69</u> (1929) 77. Phys. Rev. <u>29</u> (1927) 211.
- 11. Landolt-Bornstein. 'Physikal-Chem. Tab'. Berlin 1936.
- 12. Badger. J. Chem. Phys. 2 (1934) 128; Phys. Rev. 48 (1935) 284.
- 13. A.D. Walsh. J. Chem. Soc. (1948) 398.
- 14. Venkateswarlu. Proc. Ind. Acad. Sci. 24A (1946) 473, 480; 25A (1947) 119, 133, 151.
- 15. G. Herzberg. 'Molecular Spectra & Molecular Structure I', New York, 1939.
- 16. Kirkpatrick & Salant. Phys. Rev. 48 (1935) 945.
- 17. H.V. Wartenberg. Z. Gesellsch. Wiss. Gottingen (1946). Quoted in (20).
- 18. National Bureau of Standards (NBS). 'Tables of chemical thermodynamic properties' I III. Washington 1947 48.
- 19. A.L. Wahrhaftig. J. Chem. Phys. 10 (1942) 248.
- 20. E. Wicke. Naturwissensch. 5 (1946) 132.
- 21. E.A. Jones. T.F. Parkinson, R.B. Murray. J. Chem. Phys. 17 (1949) 501.
- 22. G. Herzberg. 'Molecular Spectra & Molecular Structure', II.

 New York 1947.

- 23. Ta-You-Wu. 'Vibrational spectra and structure of poly-atomic molecules'. Michigan 1946.
- 24. L. Pauling. 'The Nature of the Chemical Bond'. 1939.
- 25. Brodersen & H.J. Schumacher. Z. Naturforsch. 2a (1947) 258.
- 26. N.W. Luft & L.A. Wiseman. E.R.D.E. Report No. 6/M/49.
- 27. H.V. Wartenberg. Z. Anorgan. Chem. 258 (1949) 356.
- 28. D.A. Gilbert, A. Roberts, P.A. Griswold: Phys. Rev. 76 (1949) 1723.
- 29. R.L. Potter. J.Chem. Phys. 17 (1949) 957.
- 30. D.P. Stevenson & D.M. Yost. J. Chem. Phys. 9 (1941) 403.
- 31. C.H. Townes & B.P. Dailey. J.Chem. Phys. 17 (1949) 782.
- 32. K. Schafer & G. Wicke. Z. El. Chem. 52 (1948) 205.
- 33. H. Schmitz & H.J. Schumacher. Z. Naturforsch 2a (1947) 362.
- 34. E.L. Pace. J. Chem. Phys. 16 (1948) 74.
- 35. P.J.H. Woltz & G.A. Jones. J. Chem. Phys. <u>17</u> (1949) 502.
- 36. J.R. Nielsen & C.M. Richards. J. Chem. Phys. 16 (1948) 67.
- 37. L.O. Brockway. J.H. Secrist & C.M. Lucht. Abstract Buffalo Meeting of Am. Chem. Soc. (1942) quoted by E.L. Pace. J. Chem. Phys. 16 (1948) 76.
- 38. S. Mizushima, Y. Morino, T. Simanouti, K. Kuratani, J. Chem Phys. 17 (1949) 838.
- 39. L.G. Brockway. Rev. Mod. Phys. 8 (1936) 231.
- 40. I.G. Ryss. Compt. Acad. (Doklady) USSR. 24 (1939) 568.
- 41. W.C. Schumb. Ind. Eng. Chem. 39 (1947) 421.
- 42. H.M. Spencer. J. Chem. Phys. 14 (1946) 729.
- 43. D. Andrychuk, J. Chem. Phys. 18 (1950) 233.
- 44. M. Chretien & E. Miescher. Nature 163 (1949) 996.
- 45. A.G. Gaydon. 'Dissociation Energies', London 1947.
- 46. T. Simanouti. J. Chem. Phys. <u>17</u> (1949) 848.
- 47. H.S. Gutowsky, G.B. Kistiakowsky, G.E. Pake, E.M. Purcell. J. Chem. Phys. 17 (1949) 972.

/48.

- 48. W.F. Edgell & A. Roberts. J. Chem. Phys. 16 (1948) 1002.
- 49. H. Zeise. Z. El. Chem. 39 (1933) 758, 895, 40 (1934) 662, 855, 47 (1941) 380, 585, 644, 48 (1942) 425, 476, 693.
- 50. H.A. Levy & L.O. Brockway. J.Am. Chem. Soc. 59 (1937) 2035.
- 51. E.G. Meyer & E.C. Buell. J.Chem. Phys. 16 (1948) 744.
- 52. J. D'Ans & G. Lax. 'Taschenbuch f. Chem. & Phys.' Berlin 1943.
- 53. G. Justi. 'Spezif. Warme, Warmeinhalt, Entropie...'Springer Berlin, 1938.
- 54. H.A. Skinner. Trans. Far. Soc. 45 (1949) 20.
- 55. W. Roth. Z. Anorgan. Chem. 253 (1948) 224.
- 56. A.F. Wells. J. Chem. Soc. (1949) 55.
- 57. J.J. Ward & M.A. Hussey. '3rd Symposium on Combustion and Flame and Explosion Phenomena'. Williams & Wilkins Co. Baltimore. 1949. p. 599.
- 58. E. Wicke. Angew. Chem. 60 (1948) 65.
- 59. V.S. Shomaker & D.P. Stevenson. J.Am. Chem. Soc. 63 (1941) 37.
- 60. N.W. Luft. M.O.S. Volkenrode Translations Tn 75 LF 625 (1946).
- 61. K.S. Pitzer. J. Chem. Phys. 5 (1937) 469.
- 62. E.A. Jones, T.F. Parkinson, T.G. Burke: J.Chem. Phys. 17 (1950) 235.
- 63. D.F. Smith, M. Tidwell, D.V.P. Williams: J. Chem. Phys. 17 (1950) 421.

S.No. 143. KK M.No. 119/50 1. TEBLES OF THERMODYN LAIC FUNCTIONS

VIII. "FENDICES

	Kf	2.25 6.25 8.25 8.95 8.95 8.95 8.95 1.25
	log Kf	47.352 35.602 28.547 23.842 17.953 14.413 12.045 10.352 9.674 9.079 8.088
HF	ಂದಿ	6.955 6.955 6.955 7.03 7.03 7.03 7.03 7.03 7.03 7.03 7.03
	യ	45.10 46.37 48.38 51.28 52.43 54.36 55.45
	-(FC-HC)/T	34.60 36.25 38.15 38.15 41.42 45.28 45.34 45.32 47.14
	ుద్రి	7.610 7.91 8.14 8.43 8.65 8.65 8.75 8.85 8.85 8.85
F2	್ದ	50.64 52.37 53.83 56.21 59.69 61.64 64.13
	-(F°-H°)/T	41 44 45 12 45 14 45 12 15 15 15 15 15 15 15 15 15 15 15 15 15
	for Hf. +16.2 .	6.56 × 10-10 7.52 × 10-7 5.35 × 10-5 9.40 × 10-4 3.61 × 10-1 3.14 × 10-1 1.57 3.97 6.09 8.86 1.65 × 101 2.75 × 101
	K£~ f +20	1.12 × 10 -12 6.31 × 10 -9 6.31 × 10 -9 1.17 × 10 -5 3.88 × 10 -5 3.88 × 10 -5 4.66 × 10 -2 4.66 × 10 -1 1.70 1.70 2.68 5.74 1
区	r Hf° = +16.2	- 183 - 183
	log Kf for +20	-11.951 - 8.200 - 5.933 - 1.334 - 0.555 - 0.231 - 0.231 - 0.25 - 0.25
	00°	5.55 5.55
	್ಯ	37 917 37 950 39 504 40 692 41 650 45 201 45 201 45 201 46 325 46 325 47 240 47 767
	-(F°-H°)/T	32.692 32.723 34.234 35.412 36.374 37.948 37.948 40.006 40.805 41.152 41.152 41.152 42.101
	TOK	298 16 300 400 1000 1200 1500 1500

	0	2-4550 2-4550 10-10-10-10-10-10-10-10-10-10-10-10-10-1
	Kf.	25.4.4.2.2.4.4.2.2.4.4.2.2.4.4.2.2.2.4.2.2.2.4.2
	log Kf	5.868 7.474 7.637 7.637 1.561 1.450
BrF	၀ ည	7.850 8.28.20 8.20 8.20 8.20 8.20 8.20 8.20
	ದ್ದ	54.89 57.24.83 57.24.65.10 63.14 63.07 63.07 70.31
	-(FO-HO)/T	47-65 47-65 51-45 51-45 55-16 55-16 56-75 60-31 60-35 62-73
	့ မ	7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-
BeF	°t2	45.12 45.12 51.25 52.33 56.55 56.55 61.45 62.61 64.57
	-(F°-H°)/T	42.14 44.20 44.20 45.78 47.10 50.90 52.31 54.55 54.55 54.55
	for Hf ^o -11.6	5.22 × 106 2.16 × 105 3.06 × 105 2.71 × 105 5.33 × 102 2.41 × 102 1.21 × 102
	Kf ^c f -15.0	1.56 × 108 2.30 × 106 6.61 × 106 5.33 × 105 2.30 × 105 1.00 × 103 1.00 × 103 1.00 × 103 1.05 × 103 1.05 × 103
	r Hfo = -11.6	2, 23 2, 33 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
CLLP	log Kf for	11.154 6.650 6.820 5.727 4.362 3.545 3.001 2.512
	ပ္မွာ့ဌာ	7.672 8.60.60 6.00.60 7.60.60 6.00.60
	യ	52.05 54.36 56.17 57.73 60.22 63.02 65.01 65.01 66.43 66.43
	-(F-H _C)/T	44-44-45 44-45-45-45-45-45-45-45-45-45-45-45-45-4
	T.K.	278-16 300 1000 1200 1500 1500 2000

	್ ರಿ	7.064 7.287 7.55 7.79 8.39 8.39 8.54 8.57 8.63 8.75
BF	ಬ್ಧ	48 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	-(F°-H°)/T	41.02 41.06 43.07 44.64 45.95 48.04 49.71 52.31 52.31 53.36 55.15
	Kf	5.77 × 10.7 6.08 × 10.4 6.41 × 10.2 6.41 × 10.2 2.26 2 7.52 × 10.3 1.90 × 10.3 1.90 × 10.3 1.90 × 10.4 6.05 × 10.4 1.20 × 10.4 1.20 × 10.4 1.20 × 10.4
	log Kf ^o	12.725 7.761 4.784 2.807 0.355 1.123 -2.051 -2.721 -2.935 -3.703
NF2	U O	13.32 16.32 16.37 17.23 18.24 19.29 19.36 19.56
	ಯ	63.07 67.22 70.74 73.81 78.91 82.93 86.50 99.46 99.46 99.46
	-(F°-H°)/T	53.16 53.21 53.21 56.22 56.22 64.89 64.89 68.00 73.35 74.47 77.47 79.27
	Kfo	8.13 x 10 8 8.16 x 10 7 8.16 x 10 7 8.18 x 10 6 8.18 x 10 5 5.34 x 10 5 8.61 x 10 5 1.22 x 10 4 1.41 x 10 4
	log Kf°	7.090 6.088 6.088 5.687 7.582
120	0000	10.08 10.10 11.08 12.29 12.29 13.42 13.54
	တ္	58.93 59.00 62.04 64.60 66.79 70.42 73.34 77.85 75.77
	-(F ^C -H _o)/T	50.35 50.35 50.35 55.00 55.79 56.79 64.26 66.06
	Tox	298.16 300 400 500 600 800 1000 1200 1400 1500 1600 2000

	D 04	15.45 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92
PF3	ത	64. 17 64. 22 66. 37 71. 95 71. 95 75. 07 80. 25 81. 42 87. 42 87. 83 87. 83 87
	-(F°-H°)/T	54-39 57-41 57-41 59-97 66-24 66-12 66-12 72-17 76-37 76-05 76-05
	Kfo	1.70 × 10,265 1.34 × 10,157 1.34 × 10,156 7.03 × 10,156 4.70 × 10,94 4.70 × 10,94 1.14 × 10,47 1.14 × 10,47 1.14 × 10,47 1.16 × 10,50 1.14 × 10,47 1.16 × 10,50 1.16 × 10,50 1
	log Kf	265.231 197.046 156.126 126.126 126.042 94.751 74.300 60.672 50.946 47.053 47.053 47.053 47.053
SiF	0,04	17.48 19.76 21.37 22.45 23.75 24.43 24.43 24.43 24.43 25.26 25.37 25.37 25.46
The state of the s	S _o	67.30 67.35 72.31 77.31 81.31 81.31 93.34 97.96 93.34 97.96 101.66 103.43 105.04
	-(F°-H°)/T	55.11 56.20 62.13 65.13 65.13 74.10 74.10 80.05 80.05 80.05 80.05
	Kf ^o	6.79 × 1013 1.29 × 1013 1.23 × 103 1.29 × 103 1.39 × 103 7.03 × 101 7.03 × 101 6.45 × 101
	log Kfo	19.032 15.110 9.090 6.422 3.109 1.143 -0.153 -1.071
(L.F.z	ంద్రాం	15. 34 10. 36 10. 36 10. 36 10. 60 10. 60 10. 60
	က္ခ	67 02 71 67 75 54 75 54 76 34 84 21 83 45 95 02 95 02 97 65 102 03
	-(F°-H°)/T	55.95 62.19 64.70 66.93 72.43 77.99 77.99 32.35
	T ^o K.	298.16 300 400 400 500 1000 1200 1200 1400 1500 1600

TABLES OF THERMODYMALIC FUNCTIONS (Contd.)

	O Q	•							19.50					
ASFZ	ຸກ	69.10	69.16	73.90	77.83	81.16	86.56	93.32	96.86	99.88	101.23	102,50	104.62	106.90
	-(FO-HO)/T								77.58					
	K£ ^o	701		94 x 10	61 x 10	63 x 10	88 x 10	00 x 09	5.02 × 1024	87 x 10	57 x 10	64 x 10	36 x 10	90 × 10
	log Kf ^o		107,155	169.62	63,207	52,211	38.459	30,205	24.701	20,769	19.197	17,322	15,526	13.690
COE	<mark>್</mark> ದಿಂ								18.33					
	က		62.30	65.81	68.89	77.62	76.29	80.17	83.46	86.32	87.61	86.83	91.07	93.08
	-(F°-H°)/t								69,18					
	log Kf ^o		161.504	119,168	93,889	76.818	55.651	42,960	34.513	28.478	26.074	23,962	20.464	17.660
CF),	o d		14.67	17.36	19.35	20.30	22.63	23.65	24.26	24.65	24,30	24.92	25.10	25.23
O	လ		62.72	67.33	71.43	75.10	81.36	06.52	90.90	85.42	96.38	46.26	100.94	103.67
	-(F°-H°)/T		52.48	55.63	58.39	60,87	65.24	68.59	72.30	75.20	76.58	77.83	80.29	82.47
	TOK.	298.16	300	004	500	009	800	1000	1200	1400	1500	1,600	1600	2000

19.73			
104.02		్రాడ్కి	22.91 23.09 24.65 34.54 34.54 36.62 36.64 37.07
84.60	SFG	್ದ	69 41 69 52 76 83 83 34 89 09 98 75 106 57 113 13 128 09 121 89
5.36 × 10-3 4.90 × 10-3		-(F°-H°)/T	55.98 56.04 60.34 64.30 67.30 74.50 80.15 89.53 91.62 93.45
15.526		0,04	12.10 14.97 16.95 17.36 18.13 18.92 19.92 19.27
19.26	BFZ	о 0	60.69 60.74 64.45 67.73 70.73 70.73 88.53 88.53 88.07
93.08		-(F°-H°)/T	51.24 56.03 56.03 57.77 77.77 75.88 50.03 75.77 75.88 75.88 77.77 77.88 77.88 77.88 77.88
75.29 76.96		Kf	6 x 10 215 3 x 10 151 3 x 10 103 4 x 10 71 5 x 10 71 6 x 10 34 7 x 10 28 1 x 10 28 1 x 10 28 1 x 10 28 1 x 10 28
20.464		log Kf ^o	215.8 158.1 123.5 100.4 71.61 54.40 142.94 34.49 31.49 28.65 29.05 20.14
25.10 25.23	CoFC	G _o	25.22 23.25.22 23.25.22 23.25.22 24.11.44.12.03 24.25.24.25.24.25.25.25.25.25.25.25.25.25.25.25.25.25.
103.67		ಬ	79.2 87.1 94.1 100.3 112.2 113.7 135.0 143.0 143.0
80°29 82°47		-(F°-H°)/T	63.0 68.1 72.6 76.7 76.7 84.1 96.0 100.8 105.1 113.1
1600 2000		T K	298.16 300 400 500 500 1000 1200 1500 1500 1300 2000

$+ F_2 = GIF_3$ $co + 2F_2 = GF_4 + \frac{1}{2}O_2$ $GO_2 + 2F_2 = GF_4 + O_2$ $2COF_2 = GF_4 + CO_2$	PGP4 PP2 PGO PF2 PGO PF2 PGO PF2	- 24,97	Kp log Kp log Kp log Kp Kp Kp	6.65 x 10 ¹⁰ ,135.576 3.77	1.94 x 10 ⁶ 100.041 1.10 x 10 ¹⁰⁰ 67.632 4.29 x 10 ⁶⁷ 11.315	3.81×10^3 77.505 3.20×10^{77} 52.500 3.16×10^{52} 8.601	6.12 × 10 ¹ 62.482 3.03 × 10 ⁶² 42.417 2.61 × 10 ⁴² 6.799	3.63 x 10-1 43.719 5.24	1.79 x 10 ⁻² 32.483 3.04 x 10 ³² 22.284 1.92 x 10 ²² 3.227 1.69 x 10 ³	2.47×10^{-3} 25.014 1.03×10^{25} 17.273 1.87×10^{17} 2.351 2.24×10^{2}	6.08 x 10 ⁻⁴ 19.688 4.88 x 10 ¹⁹ 13.696 4.97 x 10 ¹³ 1.720	3.51 x 10 ⁻⁴ 17.569 3.71 x 10 ¹⁷ 12.275 1.38 x 10 ¹² 1.479	2.13 x 10 ⁻⁴ 15.709 5.12 x 10 ¹⁵ 11.023 1.05 x 10 ¹¹ 1.258	9.09 x 10 ⁻⁵ - 12.635 4.32 x 10 ¹² 8.964 9.20 x 10 ⁸ 0.912	
	Polr. Prz Polrz	±12 −	log Kp Kp	10.823 6.65 x 10 ¹⁰	6,289 1.94 x 10 ⁶	3.581 3.81 x 10 ³	1.787 6.12 × 10 ¹	-0.434 5.63 x 10-1	-1.746 1.79 x 10 ⁻²	-2.608 2.47 x 10-3	-3.216 6.08 x 10 ⁻⁴	-3.455 3.51 x 10 ⁻⁴	-3.661 2.13 x 10 ⁻⁴	K	-4.276 5.30 x 10-5
= BF + F2	PBF PF2 PBF3	- 242	Kp	3.26 x 10-170	7.16 x 10 ⁻¹²⁶	2.97 × 10-99	1.66 × 10-81	2.54 × 10-59	5.08 x 10-46	3.56 × 10-37	7.71 × 10-31	2.59 x 10 ⁻²⁸	4.19 x 10-26	2.0 × 10-22	1.73 × 10-19
Reaction BF3	Equilibrium Constant Kp	Enthalpy of Reaction $\Lambda { m H}_{ m o}^{ m c}$	TOK.	300	400	500 - 98.527	900 - 90° 180	800 - 58-595	1000	1200 - 36,448	1400 - 30,113	1500 - 27.537	1600 - 25,378	1800 - 21,700	2000 - 18,762

TABLES 2 - EQUILIBRIUM CONSTANTS (Contd.)

$2CF_{h} = C_2F_6 + F_2$	FCFG X FED	747	log K _p K _p	9	- 80.23 6 x 10 ⁻⁸¹	- 64.06 9 x 10-65	- 53.24 6 x 10 ⁻⁵⁴	- 35.31 5 × 10 ⁻⁴⁰	- 31.54 3 x 10-32	- 26.07 9 × 10 ⁻²⁷	- 22,20 6 x 10 ⁻²³	-20.7 2×10^{-21}	- 19.3 5 x 10-20	- 17.C 10 ⁻¹⁷	- 15.2 6 x 10 ⁻¹⁶
CF1+2H2 = (C) + 4HF 2C	Por, H2	- 27.0	Kp	7.98 × 10 ²⁷	1.73 × 10 ²³	2.66 x 10 ²⁰	3.55. x 10 ¹⁸	1.46 × 10 ¹⁶	4.92 x 10 ¹⁴	4.67 × 10 ¹³	8.53 × 10 ¹²	4.17 × 10 ¹²	2.26 x 10 ¹²	7.71 × 10 ¹¹	3.30 × 10 ¹¹
= 002 + ZHB	0	- 15,86	o Kp log Kp	7 2.67 × 10 ¹⁶ 27.902	6.37	1,80	1.74 x	5 9.66 × 10 ⁹ 16.163	6 1.72 × 10 ⁹ 14.692	1 5.38 × 10 ⁸ 13.669	2.34	1.67 x	1.26	7 7.7 × 10 ⁷ 11.587	6 5.22 × 10 ⁷ 11.518
$GF_{4} + 2H_{2}O = GO_{2} + 4HF GOF_{2} + H_{2}O$	The FCCF2 F	- 6.76	Kp log Kp	9.84 × 1016 16.427	1.96 x 10 ¹⁶ 13.804.	8.13 × 10 ¹⁵ 12.256	2.92 × 10 ¹⁵ 11.240	2.58 x 10 ¹⁵ 9.985	1.76 × 10 ¹⁵ 9.236	1.29 × 10 ¹⁵ 8.731	1.04 × 1015 8.369	9.25 × 10 ¹⁴ 8.223	8.77 × 10 ¹⁴ 8.101	7.28 x 10 ¹⁴ 7.887	6.43 × 10 ¹⁴ 7.716
OF4 + 2H20	FCO2 THE FCE, FH20	1	log K _p	16.993	16.293	15.910	15.466	15.411	15.245	15.110	15.017	14.966	14.943	14.362	14.308
CO + 2HF = COF2 + H2	FOCES - FH-2 PCO - FHF	+ 6.20	Kp	3.34 x 10-12	2.32 x 10-11	1.29 x 10-7	1.55 x 10-10	4.17 x 10-10	7.98 × 10 ⁻¹⁰	1.29 × 10 ⁻⁹	1.38 × 10-9	2.21 × 10-9	2.57 × 10 ⁻⁹	3.32 × 10 ⁻⁹	4.12 × 10 ⁻⁹
CO + 2HF	FGCES. E	+	log Kp	9/4011-	-10.635	-10.137	- 9.809	- 9.380	860-6 -	- 3,888	- 8.725	- 8.655	- 8.590	- 8-479	- 8,385
$COF_2 + ZHF = CM_4 + H_2O$	LCF, -FH20 2 FCCF2+FHF	- 9,11	K _p	2.71 × 10-1	3.24 x 10 ⁻³	2.21 x 10-4	3.60 x 10 ⁻⁵	3.75 × 10 ⁻⁶	9.79 x 10-7	1-01 x 10-7	2.25 x 10-7	1.80 x 10-7	1.44 x 10-7	1.06 × 10 ⁻⁷	8.14 × 10 ⁻⁸
COF2 + 2F	Foc		log Kp	-0.566	-2.489	-3.655	+++++-+-	-5.426	-6.009	-6.380	-6.64B	-6.744	-6.843	-6.975	-7.090
Reaction	Equilibrium Constant $K_{ m p}$	Enthalpy of Reaction AHC	T O K.	300	0047	900	009	800	1000	1200	0071	1500	1600	1300	2000

RESTRICTED

TABLE 3 - CCNTRIBUTIONS FROM INTERNAL MOVEMENT IN C2HG ABOUT G-C AXIS

Rhee Energy Function	nergy Functi	10+1	a.C	R.n.e	Energy Function	tion		Entropy		He	Heat Capacity	i to	Equilibrium	mi im
			T POTOTO	1 60 1				Ca			and an	6-		
(F)v (F)f (F)rr (E)v (E)f	(F)rr (E)v	(F)rr (E)v		F(E)		(E)rr	SV	Sf	Srr	Cv	CF	Crr	log K	Ħ
2.379 5.262 2.73 1.651 0.994	2.73 1.651	2.73 1.651		0.992	4	3.00	4-03	4.03 6.256	4-65	1.966	466.0	2,31	-1-126	690*0
2.871 5.548 3.27 1.732 0.994	3.27 1.732	1.732		0.994		2.00	09*4	6.542	5.31	1-975	466.0	2.30	-0,813	0.13
3.257 5.770 3.75 1.780 0.994	3.75 1.780	1.780		0.994		2.08	5.04	492-9	5.80	1-979	466°0	2,21	-0.614	0,19
4-530 6-458 5-16 1-881 0-994	5.16 1.881	1,881		766.0		1,88	L4-9	6.41 7.452	7.12	1,985	466.0	1.56	-0,223	0.38
5.857 7.147 6.42 1.934 0.594	7.147 6.42 1.934	1.934		0.594			7.79	7.79 8.141	8.05	1.987	455.0	1.17	-0.06	94.0

Information Centre Knowledge Services [dst] Porton Down, Salishury Wilts SP4 0JQ Tel: 01980-613753 Fax 01980-613970

Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Suit 0944 Fort Belvoir, VA 22060-6218 U.S.A.

AD#:

Date of Search: 13 February 2007

Record Summary:

Title: Thermodynamic functions of fluorine and some of its compounds

Covering dates 1950 July

Availability Open Document, Open Description, Normal Closure before FOI

Act: 30 years

Former reference (Department) ERDE 2/M/50

Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967.

The document has been released under the 30 year rule.

(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as <u>UNLIMITED</u>.